Finite Population Models of Co-evolution and Their Application to Haploidy versus Diploidy
نویسندگان
چکیده
In order to study genetic algorithms in co-evolutionary environments, we construct a Markov model of co-evolution of populations with fixed, finite population sizes. In this combined Markov model, the behavior toward the limit can be utilized to study the relative performance of the algorithms. As an application of the model, we perform an analysis of the relative performance of haploid versus diploid genetic algorithms in the co-evolutionary setup, under several parameter settings. Because of the use of Markov chains, this paper provides exact stochastic results on the expected performance of haploid and diploid algorithms in the proposed co-evolutionary model.
منابع مشابه
FINITE ELEMENT PREDICTION OF DUCTILE FRACTURE IN AUTOMOTIVE PANEL FORMING: COMPARISON BETWEEN FLD AND LEMAITRE DAMAGE MODELS
In sheet metal forming processes with complex strain paths, a part is subjected to large plastic deformation. This severe plastic deformation leads to high plastic strain localization zones and subsequent accumulation of those strains. Then internal and superficial micro-defects and in other words ductile damage is created. This damage causes quality problems such as fracture. Therefore, design...
متن کاملThe evolution of genomic imprinting: costs, benefits and long-term consequences.
Genomic imprinting refers to a pattern of gene expression in which a specific parent's allele is either under-expressed or completely silenced. Imprinting is an evolutionary conundrum because it appears to incur the costs of diploidy (e.g. presenting a larger target than haploidy to mutations) while foregoing its benefits (protection from harmful recessive mutations). Here, we critically evalua...
متن کاملHost-parasite interactions and the evolution of ploidy.
Although the majority of animals and plants, including humans, are dominated by the diploid phase of their life cycle, extensive diversity in ploidy level exists among eukaryotes, with some groups being primarily haploid whereas others alternate between haploid and diploid phases. Previous theory has illuminated conditions that favor the evolution of increased or decreased ploidy but has shed l...
متن کاملFailure Prediction during uniaxial Superplastic Tension using Finite Element Method
Superplastic materials show a very high ductility. This is due to both peculiar process conditions and material intrinsic characteristics. However, a number of superplastic materials are subjected to cavitation during superplastic deformation. Evidently, extensive cavitation imposes significant limitations on their commercial application. The deformation and failure of superplastic sheet metals...
متن کاملRecombination and the evolution of diploidy.
With two copies of every gene, a diploid organism is able to mask recessive deleterious mutations. In this paper we present the analysis of a two-locus model designed to determine when the masking of deleterious alleles favors the evolution of a dominant diploid phase in organisms that alternate between haploid and diploid phases ("alternation of generations"). It is hypothesized that diploidy ...
متن کامل